SPECIAL REPORT

The role of the I_{sK} protein in the specific pharmacological properties of the I_{Ks} channel complex

¹A.E. Busch, G.L. Busch, E. Ford, H. Suessbrich, †H.-J. Lang, *R. Greger, *K. Kunzelmann, #B. Attali & W. Stühmer

Max-Planck-Institut für experimentelle Medizin, Hermann-Rein-Str. 3, D-37075 Göttingen, †Hoechst AG, D-65926 Frankfurt/Main, *Physiological Institute, Hermann-Herder-Str. 7, D-79140 Freiburg, Germany and #Department of Neurobiology, The Weizmann Institute of Science, Rehovot, 76100, Israel

 $I_{\rm Ks}$ channels are composed of $I_{\rm sK}$ and KvLQT1 subunits and underly the slowly activating, voltage-dependent $I_{\rm Ks}$ conductance in heart. Although it appears clear that the $I_{\rm sK}$ protein affects both the biophysical properties and regulation of $I_{\rm Ks}$ channels, its role in channel pharmacology is unclear. In the present study we demonstrate that KvLQT1 homopolymeric K⁺ channels are inhibited by the $I_{\rm Ks}$ blockers 293B, azimilide and 17- β -oestradiol. However, $I_{\rm Ks}$ channels induced by the coexpression of $I_{\rm sK}$ and KvLQT1 subunits have a 6–100 fold higher affinity for these blockers. Moreover, the $I_{\rm Ks}$ activators mefenamic acid and DIDS had little effect on KvLQT1 homopolymeric channels, although they dramatically enhanced steady-state currents through heteropolymeric $I_{\rm Ks}$ channels by arresting them in an open state. In summary, the $I_{\rm sK}$ protein modulates the effects of both blockers and activators of $I_{\rm Ks}$ channels. This finding is important for the action and specificity of these drugs as $I_{\rm sK}$ protein expression in heart and other tissues is regulated during development and by hormones.

Keywords: Heart; arrhythmia; antiarrhythmics; K channel; chromanol

Introduction The I_{sK} (also called minK) protein induces slowly activating, voltage-dependent K⁺ channels in *Xenopus* oocytes, previously called $I_{\min K}$, I_{sK} or I_{Ks} channels (Takumi et al., 1988). Iks channels in Xenopus oocytes exhibit almost identical biophysical, pharmacological and regulatory properties as described for the K^+ conductance I_{Ks} in cardiac myocytes (reviewed by Busch & Suessbrich, 1997). Recent studies showed that the I_{sK} protein heteropolymerizes with a 'classical' K^+ channel subunit (KvLQT1) to form functional I_{Ks} channels (Sanguinetti et al., 1996; Barhanin et al., 1996). I_{Ks} channels represent a potentially important target for antiarrhythmic drugs. It is important to elucidate the individual roles of I_{sK} and KvLQT1 subunits for drug binding within the I_{Ks} channel complex. In the present study we therefore analysed the effects of distinct I_{Ks} channel blockers and activators on mouse KvLQT1 subunits expressed either alone or together with the human I_{sK} protein to form heteromultimeric I_{Ks} channels.

Methods Handling of *Xenopus* oocytes, synthetis of cRNA, voltage-clamp experiments and the analysis thereof have been described in detail (Busch *et al.*, 1994a). Azimilide was a gift from Procter & Gamble Pharmaceuticals. 17- β -oestradiol, DIDS (4,4'-diisothiocynostilbene-2,2'-disulphonic acid) and mefenamic acid were purchased from Sigma. Concentration-blockade releationships were calculated with the Hill equation. Student's *t* test was used to test for statistical significance, which was assumed if *P*<0.05.

Results Expression of mouse KvLQT1 in *Xenopus* oocytes alone or together with the $I_{\rm sK}$ protein induced voltage-dependent K⁺ channels (Figure 1a) with similar characteristics as previously described (Barhanin *et al.*, 1996). The current amplitude after 2 days of $I_{\rm sK}/{\rm KvLQT1}$ coexpression (i.e. $I_{\rm Ks}$

channels) was approximately 4 fold larger than the current induced by expression of the $I_{\rm sK}$ protein alone (which forms $I_{\rm Ks}$ channels with endogenous KvLQT1 subunits in *Xenopus* oocytes; Sanguinetti *et al.*, 1996). However, the possibility that heteropolymerization of endogenous and exogenous KvLQT1 subunits may occur for a small portion of the KvLQT1 and $I_{\rm Ks}$ channel populations cannot be excluded.

Oocytes expressing KvLQT1 channels or I_{Ks} channels were analysed for their sensitivity to the blockers 293B, azimilide and 17-β-oestradiol (Busch et al., 1994b; Busch et al., 1996; Waldegger et al., 1996). 293B, azimilide and $17-\beta$ -oestradiol blocked KvLQT1 with estimated IC₅₀ values of $40.9 \pm 0.9 \mu M$ (n=5), 77.4 ± 6.9 μ M (n=5) and > 50 μ M (n=5), respectively. Coexpression of KvLQT1 and I_{sK} subunits induced I_{Ks} channels which were blocked by 293B, azimilide and 17-β-oestradiol with IC₅₀ values of $6.7 \pm 0.5 \mu M$ (n = 5), $5.6 \pm 0.7 \mu M$ and $2.2 \pm 1.0 \ \mu \text{M}$ (Figure 1b; n = 5), respectively. Therefore, the coexpression of $I_{sK}/KvLQT1$ subunits induced I_{Ks} channels with a much higher blocker affinity compared to homopolymeric KvLQT1 channels. Moreover, the I_{Ks} channels induced by the overexpression of both I_{sK} and exogenous KvLQT1 subunits exerted the same sensitivity to the applied blockers as previously described for I_{Ks} channels induced by the expression of the I_{sK} protein alone. This suggests that exogenous and endogenous KvLQT1 subunits possess a similar affinity for these compounds, which is no surprise considering the high homology of the two proteins.

The Cl $^-$ channel blockers mefenamic acid and DIDS are known to have positive modulatory effects on $I_{\rm Ks}$ channels induced by expression of the human $I_{\rm sK}$ protein alone (Busch *et al.*, 1994a). As shown in Figure 2a and b, mefenamic acid (0.1 mM) had little effect on KvLQT1 channels (n=5). In contrast, the coexpression of $I_{\rm sK}$ and KvLQT1 subunits induced $I_{\rm Ks}$ channels with high sensitivity to mefenamic acid. As shown in Figure 2a and b, superfusion with mefenamic acid increased steady state currents at -10 mV about 5 fold and arrested $I_{\rm Ks}$ channels in an open state, i.e. at the holding potential of -70 mV no significant $I_{\rm Ks}$ channel deactivation was observed (n=5). This effect was rapidly reversed upon wash-out. Qualitatively similar results on $I_{\rm Ks}$ deactivation and steady state currents were observed with 0.1 mM DIDS (Figure 2b; n=5).

¹ Author for correspondence at present address: Physiological Institute, Gmelinstr.5, D-72076 Tübingen, Germany.

A.E. Busch et al Special Report

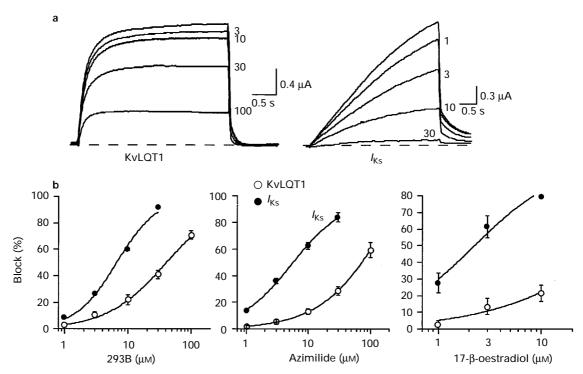
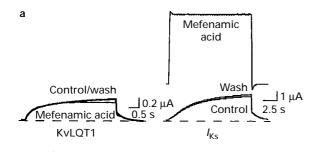
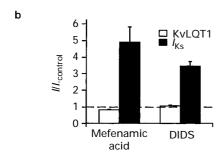




Figure 1 Effects of I_{Ks} blockers on KvLQT1 and I_{Ks} channels in *Xenopus* oocytes. (a) Left: KvLQT1 expression induced fast activating potassium channels (depolarizations to $-20\,\text{mV}$ from a holding potential of $-70\,\text{mV}$) Right: I_{Ks} channels were slower at activating than KvLQT1 channels and were more sensitive to 293B. I_{Ks} channels were activated with depolarizations from $-70\,\text{mV}$ to $-10\,\text{mV}$. (b) Concentration-dependence of inhibition by 239B, azimilide and 17-β-oestradiol of KvLQT1 and I_{Ks} .

Figure 2 (a) Effects of mefenamic acid (0.1 mm) on KvLQT1 (left) and $I_{\rm Ks}$ channels (right). $I_{\rm Ks}$ channels were repetitively activated with depolarizations from $-70\,{\rm mV}$ to $-10\,{\rm mV}$. (b) Effects of mefenamic acid and DIDS (0.1 mm) on steady state currents at $-10\,{\rm mV}$ of KvLQT1 and $I_{\rm Ks}$. The currents were normalized against control currents. The dashed line represents the relative control current.

Discussion The present data demonstrate that the I_{sK} protein plays a crucial role not only for the biophysical properties and regulation of I_{Ks} channels but also for their pharmacology. Upon overexpression it enhances the sensitivity to blockers and even more dramatically to I_{Ks} activators. This suggests that the I_{sK} protein contributes to the binding of these compounds. The binding region for these compounds may also represent a crucial interaction interface between I_{sK} and KvLQT1 subunits. Both IsK and KvLQT1 proteins are expressed in heart and numerous other epithelial tissues (reviewed by Busch & Suessbrich, 1997). Interestingly, a study by Folander et al. (1990) suggested that the sex hormone oestrogen upregulates I_{sK} protein expression in uterus, whereas Drici et al. (1996) found a downregulation in the heart after oestrogen treatment. A differential expression of the I_{sK} and KvLQT1 subunits may therefore also account for the tissuespecific action of drugs such as those described in the present study.

A.E.B. and K.K. are Heisenberg fellows, G.L.B. is a Habilitation fellow of the Deutsche Forschungsgemeinschaft (DFG), respectively. The work was supported by the DFG (Bu 704/3-2) and the German Israel Foundation. The authors appreciate the help of Drs M. Stocker and P. Pedarzani. We thank Dr M. Lazdunski for providing the KvLQT1 clone.

References

BARHANIN, J., LESAGE, F., GUILLEMARE, E., FINK, M., LAZDUNS-KI, M. & ROMEY, G. (1996). KvLQT1 and I_{sK} (minK) proteins associate to form the I_{Ks} cardiac potassium current. *Nature*, **384**, 78-80. BUSCH, A.E., HERZER, T., WAGNER, C.A., SCHMIDT, F., RABER, G., WALDEGGER, S. & LANG, F. (1994a). Positive regulation by chloride channel blockers of I_{sK} channels expressed in *Xenopus* oocytes. *Mol. Pharmacol.*, 46, 750-753.

- BUSCH, A.E., MALLOY, K., GROH, W.J., VARNUM, M.D., ADEL-MAN, J.P. & MAYLIE, J. (1994b). The novel class III antiarrhythmics NE-10064 and NE-10133 inhibit I_{sK} channels expressed in *Xenopus* oocytes and I_{Ks} in guinea pig cardiac myocytes. *Biochem. Biophys. Res. Commun.*, **202**, 265–270.
- BUSCH, A.E. & SUESSBRICH, H. (1997). Role of the $I_{\rm sK}$ protein in the $I_{\rm minK}$ channel complex. *Trends Pharmacol. Sci.*, **18**, 26–29.
- BUSCH, A.E., SUESSBRICH, H., WALDEGGER, S., SAILER, E., GREGER, R., LANG, H., LANG, F., GIBSON, K.J. & MAYLIE, J.G. (1996). Inhibition of I_{Ks} in guinea pig cardiac myocytes and guinea pig I_{sK} channels by the chromanol 293B. *Pflugers Archiv Eur. J. Physiol.*, **432**, 1094–1096.
- DRICI, M.D., BURKLOW, T.R., HARIDASSE, V., GLAZER, R.I. & WOOSLEY, R.L. (1996). Sex hormones prolong QT interval and downregulate potassium channel expression in the rabbit heart. *Circulation*, **94**, 1471–1474.
- FOLANDER, K., SMITH, J.S., ANTANAVAGE, J., BENNETT, C., STEIN, R.B. & SWANSON, R. (1990). Cloning and expression of the delayed-rectifier I_{sK} channel from neonatal rat heart and diethylstilbestrol-primed rat uterus. *Proc. Nat. Acad. Sci. U.S.A.*, **87**, 2975–2979.
- SANGUINETTI, M.C., CURRAN, M.E., ZOU, A., SHEN, J., SPECTOR, P.S., ATKINSON, D.L. & KEATING, M.T. (1996). Coassembly of KvLQT1 and minK (I_{sK}) proteins to form cardiac I_{Ks} potassium channel. *Nature*, **384**, 80–83.
- TAKUMI, T., OHKUBO, H. & NAKANISHI, S. (1988). Cloning of a membrane protein that induces a slow voltage-gated potassium current. *Science*, **242**, 1042–1045.
- WALDEGGER, S., LANG, U., HERZER, T., SUESSBRICH, H., KIESL, L., LANG, F. & BUSCH, A.E. (1996). Inhibition of minK protein induced K channels in *Xenopus*. oocytes by estrogens. *Naunyn-Schmiedberg's Arch. Pharmacol.*, **354**, 698–702.

(Received June 9, 1997 Accepted July 15, 1997)